Foreground subtraction

Jean-Marc Le Goff and Jim Rich CEA-Saclay, IRFU/SPP HSHS collaboration meeting Ifrane, 17-19 June 2009

Foregrounds

- Galactic synchrotron
- Extragalactic Radio Sources (RS)
- Galactic Radio Recombination Lines occur at known frequencies and can be excised
- Free free electron emission (Bremsstrahlung)

RS subtraction: basic idea

- Radio sources >> HI
- But radio sources smooth in v:

RS flux
$$\propto v^{-\gamma}$$

$$\gamma \approx 0.8 \ (85\%) \ \text{or} \approx -0.1 \ (15\%)$$
:

- Strategy
 - 1. Remove contribution from bright sources
 - 2. in each (θ_x, θ_y) pixel fit and subtract a polynomial in v

works well for MWA (Murchinson Widefield Array, Australia)

(Bowman, Morales, Hewitt ArXiv:0807.3956)

Bright sources

• Confusion limit
$$S_c$$
: $\left\langle \frac{\# sources(S > S_c)}{pixel} \right\rangle = 1$
HSHS pixel size: $(1+z)\times0.21/100$
 $S_c = 8$ mJy at $v=570$ MHz $(z=1.5)$
 \Rightarrow remove sources down to $S_{clean} = 40$ mJy

• All sky catalog at v = 1420 MHz down to ≈ 4 mJy J.J. Condon et al., Astronomical J. 115-1693 (1998)

Fit γ to remove all sources from catalog

 \Rightarrow remove sources down to $S_{clean} \approx 7$ mJy at v = 570 MHz

Subtraction on density map

- S_{clean}=7 mJy
- Subtract
 polynomial d=4

over $\Delta v = 250 \text{ Mhz}$

- · Little HI removed
- · HI > residual RS

Beam telescope effect

• Synthesized beam scales with $v \to RS$ passing through secondary lobes

visibility not a power law :

- FFT: also the bin center moves with v
- -multiply by a phase before FFT to have constant bin center
- →bins are correlated

Galactic synchrotron

- Galactic synchrotron > point RS
- Conventional wisdom: smooth in (θ, ϕ)
- \rightarrow no effect of RS passing in lobes
- \rightarrow less of a problem than point RS
- Ok for MWA (σ =0.07 deg, l=2500) $\frac{10^2}{500}$ 10°
- True also for HSHS $(\sigma=0.3 \text{ deg, } l=600)$?
- To be checked with simulations

Reconstruction

Ansari et al., arXiv:0807.3641

- FFT in time
- FFT along cylinder
- visibility between cylinder pairs distant by λu

$$\widetilde{V} = FFT3D[V]$$

$$\Gamma \left(\sum_{u} \frac{\sum_{u} \widetilde{V}(\vec{k}, u)}{\sum_{u} F(\vec{k}, u)} \right)$$

$$P(\vec{k}) = \left\langle \Gamma(\vec{k}) \right\rangle$$

• for the moment using only u which has largest F(k,u) for given $k \Rightarrow$ wiggles in RS residuals

RS subtraction with beam effect

- S_{clean}=7 mJy
- Subtract

 polynomial d=4
 over Δv=250 Mhz

residual RS >> HI

RS subtraction with beam effect

- $S_{clean} = 7 \, \text{mJy}$
- Subtract

polynomial d=4

over $\Delta v = 250/4 \text{ Mhz}^{\frac{2}{5}10}$

- we start to remove HI
- · still RS> HI

Subtraction of a sky model

- Polynomial is a bad model for $V(v) \Rightarrow$ new strategy
 - 1. Remove bright sources
 - 2. Subtract a sky model: effective sources on a grid (67 nodes / HSHS pixel) with fixed γ , only parameter : source flux
 - 3. In each (θ_x, θ_y) bin, remove av+b such that ϕ =0 at v_{min} and v_{max}
- To test the idea: no fit, compute source flux from known RS flux and positions

First test of sky model subtraction

0.04

0.06

80.0

log10(dpower) VS. knu

0.12

0.14

Log P_{RS} in individual modes (RS < 7 mJy)

Idem after subtraction

 \rightarrow promising

 K_{v} (hMpc⁻¹)

An additional subtraction step

Morales, Bowman, Hewitt Astroph. J. 648:767-773

- "Residual error subtraction"
 - statistical error due to noise
 - model error (polynomial is not a perfect model)
- subtraction on p(k), not on image/visibilities
- make templates for the residual $p_{RS}(\mathbf{k})$ which are different from $p_{HI}(\mathbf{k})$ (\approx isotropic)

Conclusions and prospects

- Foreground subtraction is a hard and important task
- do not have a valid strategy yet
- further study sky model (+ polynomial) subtraction if this works fit procedure for sky model
- · Study removal of galaxy synchrotron
- Test removal of known bright sources with unknown γ
- try "residual error subtraction"
- use simulations to study systematic effects e.g. pixel jitter should be smaller than 10-3 $\delta\theta$